p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C42.1C23, C8⋊3D4⋊1C2, (C2×D4).27D4, (C2×Q8).27D4, C8⋊C4⋊1C22, C4⋊1D4⋊2C22, C2.24(D4⋊4D4), C24⋊C22⋊1C2, C4.4D4.6C22, C22.182C22≀C2, C42.C22⋊1C2, (C2×C4).214(C2×D4), 2-Sylow(PSL(3,4).C2), SmallGroup(128,387)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.C23
G = < a,b,c,d,e | a4=b4=c2=d2=e2=1, ab=ba, cac=dad=a-1, eae=a-1b2, cbc=ebe=b-1, dbd=a2b-1, dcd=ac, ece=bc, de=ed >
Subgroups: 416 in 131 conjugacy classes, 30 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C2×C8, D8, SD16, C2×D4, C2×D4, C2×Q8, C24, C8⋊C4, C22≀C2, C4.4D4, C4.4D4, C4⋊1D4, C2×D8, C2×SD16, C42.C22, C8⋊3D4, C24⋊C22, C42.C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, D4⋊4D4, C42.C23
Character table of C42.C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ16 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | orthogonal lifted from D4⋊4D4 |
ρ17 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ18 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | orthogonal lifted from D4⋊4D4 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | orthogonal lifted from D4⋊4D4 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | orthogonal lifted from D4⋊4D4 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19 13 5)(2 20 14 6)(3 17 15 7)(4 18 16 8)(9 24 27 30)(10 21 28 31)(11 22 25 32)(12 23 26 29)
(1 21)(2 24)(3 23)(4 22)(5 28)(6 27)(7 26)(8 25)(9 20)(10 19)(11 18)(12 17)(13 31)(14 30)(15 29)(16 32)
(1 15)(2 14)(3 13)(4 16)(6 8)(9 10)(11 12)(18 20)(21 32)(22 31)(23 30)(24 29)(25 26)(27 28)
(2 16)(4 14)(5 19)(6 8)(7 17)(9 32)(10 21)(11 30)(12 23)(18 20)(22 27)(24 25)(26 29)(28 31)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,13,5)(2,20,14,6)(3,17,15,7)(4,18,16,8)(9,24,27,30)(10,21,28,31)(11,22,25,32)(12,23,26,29), (1,21)(2,24)(3,23)(4,22)(5,28)(6,27)(7,26)(8,25)(9,20)(10,19)(11,18)(12,17)(13,31)(14,30)(15,29)(16,32), (1,15)(2,14)(3,13)(4,16)(6,8)(9,10)(11,12)(18,20)(21,32)(22,31)(23,30)(24,29)(25,26)(27,28), (2,16)(4,14)(5,19)(6,8)(7,17)(9,32)(10,21)(11,30)(12,23)(18,20)(22,27)(24,25)(26,29)(28,31)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,13,5)(2,20,14,6)(3,17,15,7)(4,18,16,8)(9,24,27,30)(10,21,28,31)(11,22,25,32)(12,23,26,29), (1,21)(2,24)(3,23)(4,22)(5,28)(6,27)(7,26)(8,25)(9,20)(10,19)(11,18)(12,17)(13,31)(14,30)(15,29)(16,32), (1,15)(2,14)(3,13)(4,16)(6,8)(9,10)(11,12)(18,20)(21,32)(22,31)(23,30)(24,29)(25,26)(27,28), (2,16)(4,14)(5,19)(6,8)(7,17)(9,32)(10,21)(11,30)(12,23)(18,20)(22,27)(24,25)(26,29)(28,31) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19,13,5),(2,20,14,6),(3,17,15,7),(4,18,16,8),(9,24,27,30),(10,21,28,31),(11,22,25,32),(12,23,26,29)], [(1,21),(2,24),(3,23),(4,22),(5,28),(6,27),(7,26),(8,25),(9,20),(10,19),(11,18),(12,17),(13,31),(14,30),(15,29),(16,32)], [(1,15),(2,14),(3,13),(4,16),(6,8),(9,10),(11,12),(18,20),(21,32),(22,31),(23,30),(24,29),(25,26),(27,28)], [(2,16),(4,14),(5,19),(6,8),(7,17),(9,32),(10,21),(11,30),(12,23),(18,20),(22,27),(24,25),(26,29),(28,31)]])
Matrix representation of C42.C23 ►in GL8(𝔽17)
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 16 | 1 | 15 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 16 | 1 | 15 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 16 |
9 | 9 | 8 | 9 | 0 | 0 | 0 | 0 |
9 | 9 | 9 | 8 | 0 | 0 | 0 | 0 |
8 | 9 | 8 | 8 | 0 | 0 | 0 | 0 |
9 | 8 | 8 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 1 | 16 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 | 16 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 16 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 16 | 1 |
G:=sub<GL(8,GF(17))| [0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,15,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,1,1,0,0,0,0,1,0,16,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16],[9,9,8,9,0,0,0,0,9,9,9,8,0,0,0,0,8,9,8,8,0,0,0,0,9,8,8,8,0,0,0,0,0,0,0,0,16,1,0,16,0,0,0,0,1,0,16,0,0,0,0,0,16,0,0,16,0,0,0,0,1,16,16,1],[16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,1,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,1] >;
C42.C23 in GAP, Magma, Sage, TeX
C_4^2.C_2^3
% in TeX
G:=Group("C4^2.C2^3");
// GroupNames label
G:=SmallGroup(128,387);
// by ID
G=gap.SmallGroup(128,387);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,422,1123,570,521,136,3924,1411,998,242]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^2=e^2=1,a*b=b*a,c*a*c=d*a*d=a^-1,e*a*e=a^-1*b^2,c*b*c=e*b*e=b^-1,d*b*d=a^2*b^-1,d*c*d=a*c,e*c*e=b*c,d*e=e*d>;
// generators/relations
Export